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ABSTRACT 

This work details a proof of concept study for vapor phase selective sensing using a strategy of 

biorecognition elements (BRE) integrated into a zinc oxide field effect transistor (ZnO FET).  ZnO 

FETs are highly sensitive to changes to the environment with little to no selectivity.  Addition of a 

biorecognition element retains the sensitivity of the device while adding selectivity.  The DNA 

aptamer designed to bind the small molecule riboflavin was covalently integrated into the ZnO FET 

and detects the presence of 116 ppb of riboflavin in a nitrogen atmosphere by a change in current.  

The unfunctionalized ZnO FET shows no response to this same concentrations of riboflavin, 

showing that the aptamer-binding strategy may be a promising strategy for vapor phase sensing. 

Keywords: DNA aptamer, biological recognition element, field effect transistor, sensor, zinc oxide, 

riboflavin 

 

1. INTRODUCTION 

Development of sensor elements and devices requires the ability to determine the presence and 

concentration of target molecules of interest.  A number of strategies are used to achieve this, such 

as mass spectrometry
1,2

, biomolecular interaction analysis (BIA)
3,4,5

, and mass based resonance 

sensing
6,7

.  Recent advances in sensor development highlight a selective sensing strategy using 

biorecognition elements (BRE)
8
, such as DNA/RNA aptamers

9,10
 or peptides

11,12
.  Instead of using 

complex separations or algorithms for data interpretation, the BRE offers a point based detection 

where the specific molecule of interest is bound directly by the BRE.  The binding event can then be 

transduced into a reportable signal based on the sensor platform in which it is integrated.  A number 

of different sensing platforms have been developed with BRE integration such as electronic
13

, 

optical
14,15

, and mechanical devices
16

.  One of the more promising platforms is the biofunctionalized 

field effect transistor (BioFET).  The semiconductor in the FET is particularly sensitive to surface 

effects or changes, with little to no selectivity.  These surface changes can be due to environmental 

effects such as the presence of liquids or vapors.  Attaching a BRE to the semiconductor adds 

selectivity while maintaining the inherent sensitivity of the surface and has been successfully shown 

on various semiconductors such as carbon nanotubes
12,17

, silicon nanowires
18

, and zinc oxide
19

.  

However, a majority of the work with BRE-FETs is in the liquid sensing environment. 

Previous work in this group involved using a zinc oxide (ZnO) FET with an integrated DNA 

aptamer that was selected for the small molecule riboflavin
19

.  Selective detection was achieved 

below nano-molar levels in the liquid phase.  The work presented here describes the initial studies 
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on the feasibility to detect riboflavin in the vapor state using the same ZnO aptamer-FET (AptaFET) 

strategy. 

 

2. EXPERIMENTAL 

2.1 Device geometry and experimental setup 

The ZnO FETs were designed for ease of handling and testing while maintaining the active area 

presented in previous work.  The interdigitated electrode distance is 10 µm and has extended contact 

pads (400 µm
2
).  Three sets of three FETs were fabricated on a diced chip which is 20 mm x 7.5 mm 

as shown in Figure 1 below.  The devices were fabricated in a 3 mask design on a 3” silicon wafer.  

The first mask was used for patterning thick SiO
2
 insulator paths along the extended contact lines, 

the second for patterning the ZnO only in the active area (green region in Figure 1a right), and third 

for the top electrode patterning.  The ZnO was deposited using pulsed laser deposition described 

previously
20

.  The dry state device performance shows an excellent on/off ratio of 10
6
 (A) shown in 

Figure 1b.   

The next step is attaching the DNA aptamer, which is functionalized with a thiol group as specified 

and purchased from IDT Technologies.  The sequence and structure of the riboflavin binding 

aptamer is well known
21

, and is used in these experiments as:  5’-Thiol-

AGAGAGGAACGACGGTGGTGGAGGAGATCGTTCC-3’.  The thiol group on the aptamer 

provides the linkage to the ZnO via a silane linker as described previously
19

.  The surface 

morphology of a covalently attached aptamer on ZnO is shown in the micrograph in Figure 1c. 

 

Figure 1.  ZnO AptaFET 
a)  Schematic of device geometry with full chip image on the left, zoom in of single set of FETs in center, and 

individual FET right, b)  Dry state device performance, c)  Atomic force micrograph of aptamer 

functionalized ZnO semiconductor 
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2.2 Device testing – Bias stressing 

Initial testing of the devices in a nitrogen atmosphere showed a significant downward drift of current 

when a constant voltage (VG = 5V, VSD = 0.2V) was applied.  A bias stressing study was done based 

on work by Marks et al.
22

 to reduce this drift and have a steady starting current.  Bias stressing is 

done by applying a large voltage (5V) to the source/drain electrodes to help clear any charges that 

are trapped between the insulator and semiconductor layers.  This can be done in cycles, and is 

complete once a steady charge state is achieved.  A bias stressing study is shown in Figure 2 below, 

where 5V was applied for 500 seconds in 5 cycles.  An additional 6
th

 cycle was tested after the 

device sat in the nitrogen environment for 2 hours.  Even after the 2 hour delay, the bias stressing 

remained effective with a largely decreased drift. 

 

 

 
 

Figure 2.  Source/Drain Current (A) versus Time:  Bias stressing study of ZnO AptaFET with VSD = 

5V 

 

 

2.3 Non-selective vapor testing 

For baseline performance testing, the unfunctionalized ZnO FET was evaluated in a nitrogen 

atmosphere as well as adding additional vapors to the nitrogen stream.  The first evaluation was the 

effect of nitrogen flowrate on the device.  Figure 3 below shows that varying the nitrogen flowrate 

from 50 to 100 mL/min had no effect on the current flowing through the FET. 
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Figure 3.  Source/Drain current (A) versus Time with varying nitrogen flowrates 
 

 

As mentioned previously, unfunctionalized FETs commonly respond to a wide variety of vapors.  

Many vapor molecules non-selectively interact with the surface causing the current to modulate.  

The fact that the devices can respond to a variety of vapors is promising, but again there is no 

selectivity.  These interactions are shown in Figure 4 below, where high concentrations of ethanol 

and acetone were exposed to the unfunctionalized ZnO FET.  The vapors were generated by 

bubbling nitrogen through the liquids.  Figure 4a shows high concentration exposure of ethanol, and 

4b acetone.  In both cases, the current is significantly increased upon exposure.  In the case of 

ethanol, the vapor seems to desorb as the current decreases and approaches the initial level.  Acetone 

does not appear to desorb where a constant elevated current is maintained. 
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Figure 4.  Source/Drain Current (A) versus Time (s) for exposure of the ZnO FET to a) ethanol and 

b) acetone 

 

 

2.4 Selective vapor testing – exposure to riboflavin 

The negative aspect of using surface sensitive FETs in vapor sensing applications is the lack of 

selectivity upon exposure to various vapors.  This can be partially overcome by incorporating 

selective recognition elements, such as the riboflavin DNA aptamer, which was evaluated upon 

exposure to riboflavin vapor.  Since riboflavin is a solid with very low vapor pressure, an Owlstone 

vapor generator was used to create the vapor stream.  Riboflavin was placed in a permeable tube and 

inserted into the oven of the vapor generator.  A constant nitrogen flowrate (50 mL/min) was flowed 

through the oven, and a calibration curve was established to determine the amount of riboflavin that 

was vaporized.  This corresponded to a riboflavin vapor flowrate of 116 ppb (309 nM) in 50 mL/min 

of nitrogen.  A negative control experiment was run which included exposure of a non 

functionalized ZnO FET exposed to 116 ppb riboflavin, and is shown in Figure 5.  A constant 

nitrogen flow with and without riboflavin vapor was cycled back and forth to establish whether any 

recognition was evident. 

Upon functionalization of the ZnO FET with the riboflavin aptamer, detection of riboflavin in the 

vapor phase is possible, shown in Figure 6.  When riboflavin is introduced into the nitrogen stream, 

the current quickly begins to decrease, which corresponds to the mechanism described previously
19

.  

After the riboflavin flow is stopped (while maintaining nitrogen flow), the current continues to 

decrease, likely due to the slow absorption transport to the surface and residual riboflavin in the 

chamber which has not been cleared.  After purging with nitrogen, the riboflavin appears to desorb 

from the surface shown by the increase in current at ~1200 s.  Additional cycles between pure 

nitrogen and riboflavin vapor shows continued detection of riboflavin that is not seen in the 

unfunctionalized device. 
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Figure 5.  Source/Drain Current (A) versus Time (s) for an unfunctionalized ZnO FET and exposed 

to 116 ppb riboflavin vapor in nitrogen 
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Figure 6.  Source/Drain Current (A) versus Time (s) for a riboflavin-Aptamer functionalized ZnO 

FET and exposed to 116 ppb riboflavin vapor in nitrogen 

 

 

3. CONCLUSIONS 

Field effect transistor sensors can be incorporated into standard integrated electronic systems which 

can rapidly transmit sensing data to a computer, handheld sensor, or even wirelessly.  A great deal of 

research has been, and is currently being pursued for liquid phase FET sensor systems with added 

selectivity provided by biorecognition elements.  The preliminary data established here shows a 

promising route for selective sensing in the vapor phase.  By incorporating the riboflavin binding 

aptamer to a ZnO FET, we show that riboflavin can be detected at ppb levels in the vapor phase.  No 

detection occurs with an unfunctionalized ZnO FET. 

The next steps in this research include testing of additional targets using both aptamers and peptides, 

testing these in more complex vapor environments, and coupling with microchannel technologies for 

increased surface exposure to the vapors. 
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